Search results
Results from the WOW.Com Content Network
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
In general relativity, the Einstein–Rosen metric is an exact solution to the Einstein field equations derived in 1937 by Albert Einstein and Nathan Rosen. [1] It is the first exact solution to describe the propagation of a gravitational wave.
Daily time dilation (gain or loss if negative) in microseconds as a function of (circular) orbit radius r = rs/re, where rs is satellite orbit radius and re is the equatorial Earth radius, calculated using the Schwarzschild metric. At r ≈ 1.497 [Note 1] there is no time dilation. Here the effects of motion and reduced gravity cancel.
In particular, the direction of motion with respect to the sense of rotation of the central body is relevant because co-and counter-propagating waves carry a "gravitomagnetic" time delay Δt GM which could be, in principle, be measured [2] [3] if S is known.
In physics and astronomy, the Reissner–Nordström metric is a static solution to the Einstein–Maxwell field equations, which corresponds to the gravitational field of a charged, non-rotating, spherically symmetric body of mass M.
In uncurved space-time, far from a source of gravity, these geodesics correspond to straight lines; however, they may deviate from straight lines when the space-time is curved. The equation for the geodesic lines is [10] + = where Γ represents the Christoffel symbol and the variable q parametrizes the particle's path through space-time, its so ...
The measured elapsed time of a light signal in a gravitational field is longer than it would be without the field, and for moderate-strength nearly static fields the difference is directly proportional to the classical gravitational potential, precisely as given by standard gravitational time dilation formulas.
t r is the elapsed time for an observer at radial coordinate r within the gravitational field; t is the elapsed time for an observer distant from the massive object (and therefore outside of the gravitational field); r is the radial coordinate of the observer (which is analogous to the classical distance from the center of the object);