Search results
Results from the WOW.Com Content Network
The Lorenz attractor is an iconic example of a strange attractor in chaos theory.This three-dimensional fractal structure, resembling a butterfly or figure eight, reflects the long-term behavior of solutions to the Lorenz system, a set of three differential equations used by mathematician and meteorologist Edward N. Lorenz as a simple description of fluid circulation in a shallow layer (of ...
In 1963, Edward Lorenz, with the help of Ellen Fetter who was responsible for the numerical simulations and figures, [1] and Margaret Hamilton who helped in the initial, numerical computations leading up to the findings of the Lorenz model, [2] developed a simplified mathematical model for atmospheric convection. [1]
In mathematics, a chaotic map is a ... 2D Lorenz system [1] discrete: real: 2: 1: ... Not topologically conjugate to the Lorenz attractor. Chen-Celikovsky system [10]
Portal:Systems science/Picture/1 . The Lorenz attractor is a 3-dimensional structure corresponding to the long-term behavior of a chaotic flow, noted for its butterfly shape. The map shows how the state of a dynamical system (the three variables of a three-dimensional system) evolves over time in a complex, non-repeating pattern.
The Lorenz attractor arises in the study of the Lorenz oscillator, a dynamical system.. In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve.
This tells us that the logistic map with r = 4 has 2 fixed points, 1 cycle of length 2, 2 cycles of length 3 and so on. This sequence takes a particularly simple form for prime k: 2 ⋅ 2 k − 1 − 1 / k . For example: 2 ⋅ 2 13 − 1 − 1 / 13 = 630 is the number of cycles of length 13. Since this case of the logistic map is ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The Malkus waterwheel, also referred to as the Lorenz waterwheel or chaotic waterwheel, [1] is a mechanical model that exhibits chaotic dynamics. Its motion is governed by the Lorenz equations. While classical waterwheels rotate in one direction at a constant speed, the Malkus waterwheel exhibits chaotic motion where its rotation will speed up ...