enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electric charge - Wikipedia

    en.wikipedia.org/wiki/Electric_charge

    The total electric charge of an isolated system remains constant regardless of changes within the system itself. This law is inherent to all processes known to physics and can be derived in a local form from gauge invariance of the wave function. The conservation of charge results in the charge-current continuity equation.

  3. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    The charges must have a spherically symmetric distribution (e.g. be point charges, or a charged metal sphere). The charges must not overlap (e.g. they must be distinct point charges). The charges must be stationary with respect to a nonaccelerating frame of reference. The last of these is known as the electrostatic approximation. When movement ...

  4. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  5. Coulomb - Wikipedia

    en.wikipedia.org/wiki/Coulomb

    The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). [1] [2] It is defined to be equal to the electric charge delivered by a 1 ampere current in 1 second. It is used to define the elementary charge e. [2] [1]

  6. Elementary charge - Wikipedia

    en.wikipedia.org/wiki/Elementary_charge

    Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge. Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not ⁠ 1 / 2 ⁠ e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.)

  7. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    Gauss's law makes it possible to find the distribution of electric charge: The charge in any given region of the conductor can be deduced by integrating the electric field to find the flux through a small box whose sides are perpendicular to the conductor's surface and by noting that the electric field is perpendicular to the surface, and zero ...

  8. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    where r is the distance between the point charges q and Q, and q and Q are the charges (not the absolute values of the charges—i.e., an electron would have a negative value of charge when placed in the formula).

  9. Mass-to-charge ratio - Wikipedia

    en.wikipedia.org/wiki/Mass-to-charge_ratio

    When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.