Search results
Results from the WOW.Com Content Network
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.
Given a positive real number b such that b ≠ 1, the logarithm of a positive real number x with respect to base b [nb 1] is the exponent by which b must be raised to yield x. In other words, the logarithm of x to base b is the unique real number y such that b y = x {\displaystyle b^{y}=x} .
Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 = 9,808,357 + 0.09543. We can then get 10 9,808,357 × 10 0.09543 ≈ 1.25 × 10 9,808,357. Similarly, factorials can be approximated by summing the logarithms of the ...
If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: = = = = (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.
The logarithm keys (log for base-10 and ln for base-e) on a typical scientific calculator. The advent of hand-held calculators largely eliminated the use of common logarithms as an aid to computation. The numerical value for logarithm to the base 10 can be calculated with the following identities: [5]
Similarly, let b −k denote the product of b −1 with itself k times. For k = 0, the kth power is the identity: b 0 = 1. Let a also be an element of G. An integer k that solves the equation b k = a is termed a discrete logarithm (or simply logarithm, in this context) of a to the base b. One writes k = log b a.
The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.
The sum of probabilities + is a bit more involved to compute in logarithmic space, requiring the computation of one exponent and one logarithm. However, in many applications a multiplication of probabilities (giving the probability of all independent events occurring) is used more often than their addition (giving the probability of at least ...