Search results
Results from the WOW.Com Content Network
The name "camera lucida" (Latin for 'light chamber') is intended to recall the much older drawing aid, the camera obscura (Latin for 'dark chamber'). There is no optical similarity between the devices. The camera lucida is a lightweight, portable device that does not require special lighting conditions. No image is projected by the camera lucida.
A camera obscura (pl. camerae obscurae or camera obscuras; from Latin camera obscūra 'dark chamber') [1] is the natural phenomenon in which the rays of light passing through a small hole into a dark space form an image where they strike a surface, resulting in an inverted (upside down) and reversed (left to right) projection of the view outside.
The magic lantern can be seen as a further development of camera obscura. This is a natural phenomenon that occurs when an image of a scene at the other side of a screen (for instance a wall) is projected through a small hole in that screen as an inverted image (left to right and upside down) on a surface opposite to the opening.
The camera obscura was well known for centuries and documented by Ibn al-Haitham in his Book of Optics of 1011–1021. In 13th-century England Roger Bacon described the use of a camera obscura for the safe observation of solar eclipses, exactly because the viewer looks at the projected image and not the sun itself.
All images of the known 71 disks, including those of the photographic disk, were rendered in elongated form to compensate the distortion of the projection. The projector was related to other projecting phenakistiscopes and used some slotted metal shutter discs that were interchangeable for different picture disks or different effects on the screen.
Light from a scene passes through the aperture and projects an inverted image on the opposite side of the box, which is known as the camera obscura effect. The size of the images depends on the distance between the object and the pinhole. A Worldwide Pinhole Photography Day is observed on the last Sunday of April, every year. [1]
Afocal photography works with any system that can produce a virtual image of parallel light, for example telescopes and microscopes. Afocal photographic setups work because the imaging device's eyepiece produces collimated light and with the camera's lens focused at infinity, creating an afocal system with no net convergence or divergence in the light path between the two devices. [2]
The fundamental technology of most photography, whether digital or analog, is the camera obscura effect and its ability to transform of a three dimensional scene into a two dimensional image. At its most basic, a camera obscura consists of a darkened box, with a very small hole in one side, which projects an image from the outside world onto ...