Search results
Results from the WOW.Com Content Network
The earliest solution, however, was offered by Gottfried Leibniz, who published his result in the same year and whose method is the one still used today. [5] Bernoulli equations are special because they are nonlinear differential equations with known exact solutions.
A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist.
Can be reduced to a Bernoulli differential equation; a general case of the Jacobi equation [11] Elliptic function: 1 ′ = () Equation for which the elliptic functions are solutions [12] Euler's differential equation: 1
Bernoulli's principle is a key concept in fluid dynamics that relates pressure, density, speed and height. Bernoulli's principle states that an increase in the speed of a parcel of fluid occurs simultaneously with a decrease in either the pressure or the height above a datum. [1]:
It is named after Jacob Bernoulli, a 17th-century Swiss mathematician, who analyzed them in his Ars Conjectandi (1713). [2] The mathematical formalization and advanced formulation of the Bernoulli trial is known as the Bernoulli process. Since a Bernoulli trial has only two possible outcomes, it can be framed as a "yes or no" question. For example:
The built-in beams shown in the figure below are statically indeterminate. To determine the stresses and deflections of such beams, the most direct method is to solve the Euler–Bernoulli beam equation with appropriate boundary conditions. But direct analytical solutions of the beam equation are possible only for the simplest cases.
The correspondence between Riccati equations and second-order linear ODEs has other consequences. For example, if one solution of a 2nd order ODE is known, then it is known that another solution can be obtained by quadrature, i.e., a simple integration. The same holds true for the Riccati equation.
A prototypical example of a planetary problem is the Sun–Jupiter–Saturn system, where the mass of the Sun is about 1000 times larger than the masses of Jupiter or Saturn. [18] An approximate solution to the problem is to decompose it into n − 1 pairs of star–planet Kepler problems, treating interactions among the planets as perturbations.