Search results
Results from the WOW.Com Content Network
The Venturi effect is the reduction in fluid pressure that results when a moving fluid speeds up as it flows from one section of a pipe to a smaller section. The Venturi effect is named after its discoverer, the Italian physicist Giovanni Battista Venturi, and first published in 1797.
de Laval nozzles are venturi tubes that produce supersonic gas velocities as the tube and the gas are first constricted and then the tube and gas are expanded beyond the choke plane. Rocket engine nozzles discusses how to calculate the exit velocity from nozzles used in rocket engines. Hydraulic jump; High pressure jet
Figure 1: A de Laval nozzle, showing approximate flow velocity increasing from green to red in the direction of flow Density flow in a nozzle. A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.
A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .
A vacuum ejector, or simply ejector, or aspirator, is a type of vacuum pump, which produces vacuum by means of the Venturi effect.. In an ejector, a working fluid (liquid or gaseous) flows through a jet nozzle into a tube that first narrows and then expands in cross-sectional area.
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
The secondary or final nozzle was a fixed geometry sized for the maximum afterburner case. At non-afterburner thrust settings the exit area was too big for the closed engine nozzle giving over-expansion. Free-floating doors were added to the ejector allowing secondary air to control the primary jet expansion. [11]
Figure 1: A Converging Nozzle. Consider a converging nozzle connecting a reservoir with a receiver. If the reservoir pressure is held constant and the receiver pressure reduced, the Mach number at the exit of the nozzle will increase until M e = 1 is reached, indicated by the left curve in figure 2.