enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/.../Matrix_multiplication_algorithm

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  3. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.

  4. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The best known lower bound for matrix-multiplication complexity is Ω(n 2 log(n)), for bounded coefficient arithmetic circuits over the real or complex numbers, and is due to Ran Raz. [32] The exponent ω is defined to be a limit point, in that it is the infimum of the exponent over all matrix multiplication algorithms. It is known that this ...

  5. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    The computational complexity of commonly used algorithms is O(n 3) in general. [citation needed] The algorithms described below all involve about (1/3)n 3 FLOPs (n 3 /6 multiplications and the same number of additions) for real flavors and (4/3)n 3 FLOPs for complex flavors, [16] where n is the size of the matrix A.

  6. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix.

  7. Basic Linear Algebra Subprograms - Wikipedia

    en.wikipedia.org/wiki/Basic_Linear_Algebra...

    Due to the ubiquity of matrix multiplications in many scientific applications, including for the implementation of the rest of Level 3 BLAS, [21] and because faster algorithms exist beyond the obvious repetition of matrix-vector multiplication, gemm is a prime target of optimization for BLAS implementers.

  8. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    Naïve matrix multiplication requires one multiplication for each "1" of the left column. Each of the other columns (M1-M7) represents a single one of the 7 multiplications in the Strassen algorithm. The sum of the columns M1-M7 gives the same result as the full matrix multiplication on the left.

  9. Online matrix-vector multiplication problem - Wikipedia

    en.wikipedia.org/wiki/Online_matrix-vector...

    The online vector-matrix-vector problem (OuMv) is a variant of OMv where the algorithm receives, at each round , two Boolean vectors and , and returns the product . This version has the benefit of returning a Boolean value at each round instead of a vector of an n {\displaystyle n} -dimensional Boolean vector.