Search results
Results from the WOW.Com Content Network
In most piston engines, the camshaft(s) are mechanically connected to the crankshaft. The crankshaft drives the camshaft (via a timing belt, timing chain or gears), which in turn actuates the intake and exhaust valves. [1] These valves allow the engine to inhale air (or an air/fuel mixture) and exhale the exhaust gasses. [2]
For twin-cam or DOHC engines, VCT was used on either the intake or exhaust camshaft. (Engines that have VCT on both camshafts are now designated as Ti-VCT.↓) The use of variable camshaft timing on the exhaust camshaft is for improved emissions, and vehicles with VCT on the exhaust camshaft do not require exhaust gas recirculation (EGR) as retarding the exhaust cam timing achieves the same ...
The cam can be seen as a device that converts rotational motion to reciprocating (or sometimes oscillating) motion. [clarification needed] [3] A common example is the camshaft of an automobile, which takes the rotary motion of the engine and converts it into the reciprocating motion necessary to operate the intake and exhaust valves of the cylinders.
A camshaft operating two valves. A camshaft is a shaft that contains a row of pointed cams in order to convert rotational motion to reciprocating motion.Camshafts are used in piston engines (to operate the intake and exhaust valves), [1] [2] mechanically controlled ignition systems and early electric motor speed controllers.
In mechanical engineering, an end-face mechanical seal (often shortened to mechanical seal) is a type of seal used in rotating equipment, such as pumps, mixers, blowers, and compressors. When a pump operates, the liquid could leak out of the pump between the rotating shaft and the stationary pump casing. Since the shaft rotates, preventing this ...
An engine requires large amounts of air when operating at high speeds. However, the intake valves may close before enough air has entered each combustion chamber, reducing performance. On the other hand, if the camshaft keeps the valves open for longer periods of time, as with a racing cam, problems start to occur at the lower engine speeds.
Whether slipping occurs depends on how the hammer blow compares on all the coupled wheels at the same time. Excessive hammer blow from high slipping speeds was a cause of kinked rails with new North American 4–6–4s and 4–8–4s that followed the 1934 A.A.R. recommendation to balance 40% of the reciprocating weight.
The cam's shape determines the piston's stroke length, timing, and speed. These factors directly influence the engine's performance characteristics. In a cam engine, the cam is connected to a drive mechanism, usually a shaft. This shaft rotates the cam at a specific speed. The rotation of the cam is synchronized with the engine's combustion cycle.