Search results
Results from the WOW.Com Content Network
The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals. Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity.
Plot of the logarithmic integral function li(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D. In mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance.
The natural logarithm of a positive, real number a may be defined as the area under the graph of the hyperbola with equation y = 1/x between x = 1 and x = a. This is the integral [4] =. If a is in (,), then the region has negative area, and the logarithm is negative.
These are the three main logarithm laws/rules/principles, [3] from which the other properties listed above can be proven. Each of these logarithm properties correspond to their respective exponent law, and their derivations/proofs will hinge on those facts. There are multiple ways to derive/prove each logarithm law – this is just one possible ...
The logarithm of a product is the sum of the logarithms of the numbers being multiplied; the logarithm of the ratio of two numbers is the difference of the logarithms. The logarithm of the p-th power of a number is p times the logarithm of the number itself; the logarithm of a p-th root is the logarithm of the number divided by p. The following ...
An even larger, multivolume table is the Integrals and Series by Prudnikov, Brychkov, and Marichev (with volumes 1–3 listing integrals and series of elementary and special functions, volume 4–5 are tables of Laplace transforms).
The term integral logarithm may stand for: Discrete logarithm in algebra, Logarithmic integral function in calculus This page was last edited on 28 ...
This integral follows from the general relation of the polylogarithm with the Hurwitz zeta function and a familiar integral representation of the latter. The polylogarithm may be quite generally represented by a Hankel contour integral ( Whittaker & Watson 1927 , § 12.22, § 13.13), which extends the Bose–Einstein representation to negative ...