Search results
Results from the WOW.Com Content Network
As an illustration of this, the parity cycle (1 1 0 0 1 1 0 0) and its sub-cycle (1 1 0 0) are associated to the same fraction 5 / 7 when reduced to lowest terms. In this context, assuming the validity of the Collatz conjecture implies that (1 0) and (0 1) are the only parity cycles generated by positive whole numbers (1 and 2 ...
The 3x + 1 semigroup has been used to prove a weaker form of the Collatz conjecture. In fact, it was in such context the concept of the 3 x + 1 semigroup was introduced by H. Farkas in 2005. [ 2 ] Various generalizations of the 3 x + 1 semigroup have been constructed and their properties have been investigated.
More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve E has rank r, then the L-function L(E, s) associated with it vanishes to order r at s = 1. Hilbert's tenth problem dealt with a more general type of equation, and in that case it was proven that there is no algorithmic way to decide whether a given ...
The equations 3x + 2y = 6 and 3x + 2y = 12 are inconsistent. A linear system is inconsistent if it has no solution, and otherwise, it is said to be consistent . [ 7 ] When the system is inconsistent, it is possible to derive a contradiction from the equations, that may always be rewritten as the statement 0 = 1 .
has no real number solution since no real number squared equals −1. Sometimes a quadratic equation has a root of multiplicity 2, such as: (+) = For this equation, −1 is a root of multiplicity 2. This means −1 appears twice, since the equation can be rewritten in factored form as
In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division. It is mostly taught for division by linear monic polynomials (known as Ruffini's rule ), but the method can be generalized to division by any polynomial .
The polynomial 3x 2 − 5x + 4 is written in descending powers of x. The first term has coefficient 3, indeterminate x, and exponent 2. In the second term, the coefficient is −5. The third term is a constant. Because the degree of a non-zero polynomial is the largest degree of any one term, this polynomial has degree two. [11]
If one denotes by F(i) the sequence of Fibonacci numbers, indexed so that F(0) = F(1) = 1, then the identity = ⌊ ⌋ = has the following combinatorial proof. [12] One may show by induction that F ( n ) counts the number of ways that a n × 1 strip of squares may be covered by 2 × 1 and 1 × 1 tiles.