enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...

  3. List of open-source software for mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_open-source...

    SageMath is designed partially as a free alternative to the general-purpose mathematics products Maple and MATLAB. It can be downloaded or used through a web site. SageMath comprises a variety of other free packages, with a common interface and language. SageMath is developed in Python.

  4. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    The first four partial sums of the series 1 + 2 + 3 ... is a method to isolate the constant term in the Euler–Maclaurin formula for the partial sums of a series.

  5. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    A negative-order reversal of this sequence powers formula corresponding to the operation of repeated integration is defined by the zeta series transformation and its generalizations defined as a derivative-based transformation of generating functions, or alternately termwise by and performing an integral transformation on the sequence ...

  6. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    Recamán's sequence: 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence. A005132: Look-and ...

  7. Möbius inversion formula - Wikipedia

    en.wikipedia.org/wiki/Möbius_inversion_formula

    Given an arithmetic function, one can generate a bi-infinite sequence of other arithmetic functions by repeatedly applying the first summation. For example, if one starts with Euler's totient function φ, and repeatedly applies the transformation process, one obtains: φ the totient function; φ ∗ 1 = I, where I(n) = n is the identity function

  8. Faulhaber's formula - Wikipedia

    en.wikipedia.org/wiki/Faulhaber's_formula

    Faulhaber's formula is also called Bernoulli's formula. Faulhaber did not know the properties of the coefficients later discovered by Bernoulli. Rather, he knew at least the first 17 cases, as well as the existence of the Faulhaber polynomials for odd powers described below. [2] Jakob Bernoulli's Summae Potestatum, Ars Conjectandi, 1713

  9. MPIR (mathematics software) - Wikipedia

    en.wikipedia.org/wiki/MPIR_(mathematics_software)

    According to the MPIR-devel mailing list, "MPIR is no longer maintained", [2] except for building the old code on Windows using new versions of Microsoft Visual Studio. According to the MPIR developers, some of the main goals of the MPIR project were: Maintaining compatibility with GMP – so that MPIR can be used as a replacement for GMP.