enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used.

  3. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Frobenius inner product, the dot product of matrices considered as vectors, or, equivalently the sum of the entries of the Hadamard product; Hadamard product of two matrices of the same size, resulting in a matrix of the same size, which is the product entry-by-entry; Kronecker product or tensor product, the generalization to any size of the ...

  4. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The generalization of the dot product formula to Riemannian manifolds is a defining property of a Riemannian connection, which differentiates a vector field to give a vector-valued 1-form. Cross product rule

  5. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    The simple product of two triple products (or the square of a triple product), may be expanded in terms of dot products: [1] (()) (()) = [] This restates in vector notation that the product of the determinants of two 3×3 matrices equals the determinant of their matrix product.

  6. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    Also, the dot, cross, and dyadic products can all be expressed in matrix form. Dyadic expressions may closely resemble the matrix equivalents. The dot product of a dyadic with a vector gives another vector, and taking the dot product of this result gives a scalar derived from the dyadic.

  7. Trace (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Trace_(linear_algebra)

    If one views any real m × n matrix as a vector of length mn (an operation called vectorization) then the above operation on A and B coincides with the standard dot product. According to the above expression, tr( A ⊤ A ) is a sum of squares and hence is nonnegative, equal to zero if and only if A is zero.

  8. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The analog formula to the above generalization of Euler's formula for Pauli matrices, the group element in terms of spin matrices, is tractable, but less simple. [7] Also useful in the quantum mechanics of multiparticle systems, the general Pauli group G n is defined to consist of all n-fold tensor products of Pauli matrices.

  9. Lists of vector identities - Wikipedia

    en.wikipedia.org/wiki/Lists_of_vector_identities

    Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.