enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Variational inequality - Wikipedia

    en.wikipedia.org/wiki/Variational_inequality

    The first problem involving a variational inequality was the Signorini problem, posed by Antonio Signorini in 1959 and solved by Gaetano Fichera in 1963, according to the references (Antman 1983, pp. 282–284) and (Fichera 1995): the first papers of the theory were (Fichera 1963) and (Fichera 1964a), (Fichera 1964b).

  3. Khalida Inayat Noor - Wikipedia

    en.wikipedia.org/wiki/Khalida_Inayat_Noor

    Khalida Inayat Noor is a Pakistani mathematician who was awarded with Pride of Performance award by the President of Pakistan in 2011. [1] Her research topics include mathematical analysis , variational inequalities , and integral operators .

  4. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers.

  5. Total variation distance of probability measures - Wikipedia

    en.wikipedia.org/wiki/Total_variation_distance...

    The total variation distance (or half the norm) arises as the optimal transportation cost, when the cost function is (,) =, that is, ‖ ‖ = (,) = {(): =, =} = ⁡ [], where the expectation is taken with respect to the probability measure on the space where (,) lives, and the infimum is taken over all such with marginals and , respectively.

  6. Poincaré inequality - Wikipedia

    en.wikipedia.org/wiki/Poincaré_inequality

    When Ω is a ball, the above inequality is called a (p,p)-Poincaré inequality; for more general domains Ω, the above is more familiarly known as a Sobolev inequality. The necessity to subtract the average value can be seen by considering constant functions for which the derivative is zero while, without subtracting the average, we can have ...

  7. Variational principle - Wikipedia

    en.wikipedia.org/wiki/Variational_principle

    For example, the problem of determining the shape of a hanging chain suspended at both ends—a catenary—can be solved using variational calculus, and in this case, the variational principle is the following: The solution is a function that minimizes the gravitational potential energy of the chain.

  8. Vitale's random Brunn–Minkowski inequality - Wikipedia

    en.wikipedia.org/wiki/Vitale's_random_Brunn...

    In mathematics, Vitale's random Brunn–Minkowski inequality is a theorem due to Richard Vitale that generalizes the classical Brunn–Minkowski inequality for compact subsets of n-dimensional Euclidean space R n to random compact sets.

  9. Hoeffding's inequality - Wikipedia

    en.wikipedia.org/wiki/Hoeffding's_inequality

    Hoeffding's inequality is a special case of the Azuma–Hoeffding inequality and McDiarmid's inequality. It is similar to the Chernoff bound, but tends to be less sharp, in particular when the variance of the random variables is small. [2] It is similar to, but incomparable with, one of Bernstein's inequalities.