Search results
Results from the WOW.Com Content Network
Radioactive isotope table "lists ALL radioactive nuclei with a half-life greater than 1000 years", incorporated in the list above. The NUBASE2020 evaluation of nuclear physics properties F.G. Kondev et al. 2021 Chinese Phys. C 45 030001. The PDF of this article lists the half-lives of all known radioactives nuclides.
Instead, the half-life is defined in terms of probability: "Half-life is the time required for exactly half of the entities to decay on average". In other words, the probability of a radioactive atom decaying within its half-life is 50%. [2] For example, the accompanying image is a simulation of many identical atoms undergoing radioactive decay.
The three long-lived nuclides are uranium-238 (half-life 4.5 billion years), uranium-235 (half-life 700 million years) and thorium-232 (half-life 14 billion years). The fourth chain has no such long-lasting bottleneck nuclide near the top, so almost all of the nuclides in that chain have long since decayed down to just before the end: bismuth-209.
Entries starting with a ">" indicates that no decay has ever been observed, with null experiments establishing lower limits for the half-life. Such elements are considered stable unless a decay can be observed (establishing an actual estimate for the half-life). Note half-lives may be imprecise estimates and can be subject to significant revision.
So, for example, digoxin has a half-life (or t 1 / 2 ) of 24–36 h; this means that a change in the dose will take the best part of a week to take full effect. For this reason, drugs with a long half-life (e.g., amiodarone , elimination t 1 / 2 of about 58 days) are usually started with a loading dose to achieve their desired ...
Terms "partial half-life" and "partial mean life" denote quantities derived from a decay constant as if the given decay mode were the only decay mode for the quantity. The term "partial half-life" is misleading, because it cannot be measured as a time interval for which a certain quantity is halved.
The longest-lived of these isotopes, and the most relevantly studied, are 90 Sr with a half-life of 28.9 years, 85 Sr with a half-life of 64.853 days, and 89 Sr (89 Sr) with a half-life of 50.57 days. All other strontium isotopes have half-lives shorter than 50 days, most under 100 minutes.
Naturally occurring titanium (22 Ti) is composed of five stable isotopes; 46 Ti, 47 Ti, 48 Ti, 49 Ti and 50 Ti with 48 Ti being the most abundant (73.8% natural abundance).Twenty-one radioisotopes have been characterized, with the most stable being 44 Ti with a half-life of 60 years, 45 Ti with a half-life of 184.8 minutes, 51 Ti with a half-life of 5.76 minutes, and 52 Ti with a half-life of ...