Search results
Results from the WOW.Com Content Network
In engineering, attenuation is usually measured in units of decibels per unit length of medium (dB/cm, dB/km, etc.) and is represented by the attenuation coefficient of the medium in question. [1] Attenuation also occurs in earthquakes; when the seismic waves move farther away from the hypocenter, they grow smaller as they are attenuated by the ...
A 3 dB pad reduces power to one half, 6 dB to one fourth, 10 dB to one tenth, 20 dB to one hundredth, 30 dB to one thousandth and so on. When input and output impedances are the same, voltage attenuation will be the square root of power attenuation, so, for example, a 6 dB attenuator that reduces power to one fourth will reduce the voltage (and ...
The attenuation coefficient of a volume, denoted μ, is defined as [6] =, where Φ e is the radiant flux;; z is the path length of the beam.; Note that for an attenuation coefficient which does not vary with z, this equation is solved along a line from =0 to as:
The decibel originates from methods used to quantify signal loss in telegraph and telephone circuits. Until the mid-1920s, the unit for loss was miles of standard cable (MSC). 1 MSC corresponded to the loss of power over one mile (approximately 1.6 km) of standard telephone cable at a frequency of 5000 radians per second (795.8 Hz), and matched closely the smallest attenuation detectable to a ...
Most frequently this proportion is one half the passband power, also referred to as the 3 dB point since a fall of 3 dB corresponds approximately to half power. As a voltage ratio this is a fall to 1 / 2 ≈ 0.707 {\textstyle {\sqrt {1/2}}\ \approx \ 0.707} of the passband voltage. [ 1 ]
For instance, if stage 1 represents a 6 dB attenuator so that =, then = + +. Effectively the noise temperature of the amplifier T 2 {\displaystyle T_{2}} has been quadrupled, in addition to the (smaller) contribution due to the attenuator itself T 1 {\displaystyle T_{1}} (usually room temperature if the attenuator is composed of resistors ).
An electromagnetic wave propagating in the +z-direction is conventionally described by the equation: (,) = [()], where E 0 is a vector in the x-y plane, with the units of an electric field (the vector is in general a complex vector, to allow for all possible polarizations and phases);
is the desired passband attenuation at the cutoff frequency in dB (1 dB, 3 dB, 10 dB, etc.) n {\displaystyle n} is the number of poles (the order of the filter). A quick sanity check on the above equation using passband ripple attenuation for the passband cutoff attenuation ( α = δ ) {\displaystyle (\alpha =\delta )} reveals that the pole ...