enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    Convolution has applications that include probability, statistics, acoustics, spectroscopy, signal processing and image processing, geophysics, engineering, physics, computer vision and differential equations. [1] The convolution can be defined for functions on Euclidean space and other groups (as algebraic structures).

  3. Two-sided Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Two-sided_Laplace_transform

    In mathematics, the two-sided Laplace transform or bilateral Laplace transform is an integral transform equivalent to probability's moment-generating function. Two-sided Laplace transforms are closely related to the Fourier transform , the Mellin transform , the Z-transform and the ordinary or one-sided Laplace transform .

  4. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    The Laplace transform is used frequently in engineering and physics; the output of a linear time-invariant system can be calculated by convolving its unit impulse response with the input signal. Performing this calculation in Laplace space turns the convolution into a multiplication; the latter being easier to solve because of its algebraic form.

  5. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    the solution of the initial-value problem = is the convolution (). Through the superposition principle , given a linear ordinary differential equation (ODE), L y = f {\displaystyle Ly=f} , one can first solve L G = δ s {\displaystyle LG=\delta _{s}} , for each s , and realizing that, since the source is a sum of delta functions , the solution ...

  6. Laplace distribution - Wikipedia

    en.wikipedia.org/wiki/Laplace_distribution

    In probability theory and statistics, the Laplace distribution is a continuous probability distribution named after Pierre-Simon Laplace.It is also sometimes called the double exponential distribution, because it can be thought of as two exponential distributions (with an additional location parameter) spliced together along the abscissa, although the term is also sometimes used to refer to ...

  7. Asymmetric Laplace distribution - Wikipedia

    en.wikipedia.org/wiki/Asymmetric_Laplace...

    For the example in finance, S.G. Kou developed a model for financial instrument prices incorporating an asymmetric Laplace distribution to address problems of skewness, kurtosis and the volatility smile that often occur when using a normal distribution for pricing these instruments. [6]

  8. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  9. Multidimensional transform - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_transform

    The multidimensional Laplace transform is useful for the solution of boundary value problems. Boundary value problems in two or more variables characterized by partial differential equations can be solved by a direct use of the Laplace transform. [3] The Laplace transform for an M-dimensional case is defined [3] as