enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isosceles trapezoid - Wikipedia

    en.wikipedia.org/wiki/Isosceles_trapezoid

    In any isosceles trapezoid, two opposite sides (the bases) are parallel, and the two other sides (the legs) are of equal length (properties shared with the parallelogram), and the diagonals have equal length. The base angles of an isosceles trapezoid are equal in measure (there are in fact two pairs of equal base angles, where one base angle is ...

  3. Trapezoid - Wikipedia

    en.wikipedia.org/wiki/Trapezoid

    An isosceles trapezoid is a trapezoid where the base angles have the same measure. As a consequence the two legs are also of equal length and it has reflection symmetry . This is possible for acute trapezoids or right trapezoids (as rectangles).

  4. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, [1] but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. [2] [3] A kite may also be called a dart, [4] particularly if it is ...

  5. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Isosceles trapezium (UK) or isosceles trapezoid (US): one pair of opposite sides are parallel and the base angles are equal in measure. Alternative definitions are a quadrilateral with an axis of symmetry bisecting one pair of opposite sides, or a trapezoid with diagonals of equal length. Parallelogram: a quadrilateral with two pairs of ...

  6. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    A square is a special case of a rhombus (equal sides, opposite equal angles), a kite (two pairs of adjacent equal sides), a trapezoid (one pair of opposite sides parallel), a parallelogram (all opposite sides parallel), a quadrilateral or tetragon (four-sided polygon), and a rectangle (opposite sides equal, right-angles), and therefore has all ...

  7. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.

  8. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    In spherical geometry, a spherical quadrilateral formed from four intersecting greater circles is cyclic if and only if the summations of the opposite angles are equal, i.e., α + γ = β + δ for consecutive angles α, β, γ, δ of the quadrilateral. [30] One direction of this theorem was proved by Anders Johan Lexell in 1782. [31]

  9. Dual polygon - Wikipedia

    en.wikipedia.org/wiki/Dual_polygon

    The sums of the two pairs of opposite angles are equal The sums of the two pairs of opposite sides are equal This duality is perhaps even more clear when comparing an isosceles trapezoid to a kite .