enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Degree of reaction - Wikipedia

    en.wikipedia.org/wiki/Degree_of_Reaction

    The degree of reaction contributes to the stage efficiency and thus used as a design parameter. Stages having 50% degree of reaction are used where the pressure drop is equally shared by the stator and the rotor for a turbine. Figure 4. Velocity triangle for Degree of Reaction = 1/2 in a turbine

  3. Francis turbine - Wikipedia

    en.wikipedia.org/wiki/Francis_turbine

    The Francis turbine is a type of water turbine. It is an inward-flow reaction turbine that combines radial and axial flow concepts. Francis turbines are the most common water turbine in use today, and can achieve over 95% efficiency. [1] The process of arriving at the modern Francis runner design took from 1848 to approximately 1920. [1]

  4. Euler's pump and turbine equation - Wikipedia

    en.wikipedia.org/wiki/Euler's_pump_and_turbine...

    With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1] These equations can be derived from the moment of momentum equation when applied for a pump or a turbine.

  5. Category:Steam turbines - Wikipedia

    en.wikipedia.org/wiki/Category:Steam_turbines

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  6. Out-flow radial turbine - Wikipedia

    en.wikipedia.org/wiki/Out-flow_radial_turbine

    Radial flow turbines are mechanically robust compared to axial turbines and they are easy to configure. As a result of that they were considered for the application before axial turbine. They are more tolerant of overspeed and temporary temperature extremes. Radial flow turbines have higher energy extraction capability in one single stage.

  7. Category:Turbines - Wikipedia

    en.wikipedia.org/wiki/Category:Turbines

    A turbine is a rotary engine that extracts energy from a fluid flow. The simplest turbines have one moving part, a rotor-blade assembly. Moving fluid acts on the blades to spin them and impart energy to the rotor. Early turbine examples are windmills and waterwheels. See also Steam turbines and Category:Fossil fuel power stations

  8. Axial compressor - Wikipedia

    en.wikipedia.org/wiki/Axial_compressor

    From an energy exchange point of view axial compressors are reversed turbines. Steam-turbine designer Charles Algernon Parsons, for example, recognized that a turbine which produced work by virtue of a fluid's static pressure (i.e. a reaction turbine) could have its action reversed to act as an air compressor, calling it a turbo compressor or pump.

  9. Turbine - Wikipedia

    en.wikipedia.org/wiki/Turbine

    In practice, modern turbine designs use both reaction and impulse concepts to varying degrees whenever possible. Wind turbines use an airfoil to generate a reaction lift from the moving fluid and impart it to the rotor. Wind turbines also gain some energy from the impulse of the wind, by deflecting it at an angle.