enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Position of the Sun - Wikipedia

    en.wikipedia.org/wiki/Position_of_the_Sun

    The position of the Sun in the sky is a function of both the time and the geographic location of observation on Earth's surface. As Earth orbits the Sun over the course of a year , the Sun appears to move with respect to the fixed stars on the celestial sphere , along a circular path called the ecliptic .

  3. Earth's orbit - Wikipedia

    en.wikipedia.org/wiki/Earth's_orbit

    Ignoring the influence of other Solar System bodies, Earth's orbit, also called Earth's revolution, is an ellipse with the EarthSun barycenter as one focus with a current eccentricity of 0.0167. Since this value is close to zero, the center of the orbit is relatively close to the center of the Sun (relative to the size of the orbit).

  4. Solar longitude - Wikipedia

    en.wikipedia.org/wiki/Solar_longitude

    Solar longitude, commonly abbreviated as Ls, is the ecliptic longitude of the Sun, i.e. the position of the Sun on the celestial sphere along the ecliptic.It is also an effective measure of the position of the Earth (or any other Sun-orbiting body) in its orbit around the Sun, [1] usually taken as zero at the moment of the vernal equinox. [2]

  5. Sun path - Wikipedia

    en.wikipedia.org/wiki/Sun_path

    Sun path, sometimes also called day arc, refers to the daily (sunrise to sunset) and seasonal arc-like path that the Sun appears to follow across the sky as the Earth rotates and orbits the Sun. The Sun's path affects the length of daytime experienced and amount of daylight received along a certain latitude during a given season.

  6. Effect of Sun angle on climate - Wikipedia

    en.wikipedia.org/wiki/Effect_of_Sun_angle_on_climate

    For example, with an axial tilt is 23°, and at a latitude of 45°, then the summer's peak sun angle is 68° (giving sin(68°) = 93% insolation at the surface), while winter's least sun angle is 22° (giving sin(22°) = 37% insolation at the surface). Thus, the greater the axial tilt, the stronger the seasons' variations at a given latitude. [4]

  7. Earth's tilt explains seasons, more - AOL

    www.aol.com/news/earths-tilt-explains-seasons...

    Jun. 26—This week marks the end of June and we are heading rapidly around the sun. Because our planet has that interesting tilt to it, the northern hemisphere is collecting many hours of ...

  8. Seasons on planets - Wikipedia

    en.wikipedia.org/wiki/Seasons_on_planets

    Given the different Sun incidence in different positions in the orbit, it is necessary to define a standard point of the orbit of the planet, to define the planet position in the orbit at each moment of the year w.r.t such point; this point is called with several names: vernal equinox, spring equinox, March equinox, all equivalent, and named considering northern hemisphere seasons.

  9. Solar calendar - Wikipedia

    en.wikipedia.org/wiki/Solar_calendar

    If the position of the Earth in its orbit around the Sun is reckoned with respect to the Equinox, the point at which the orbit crosses the celestial equator, then its dates accurately indicate the seasons, that is, they are synchronized with the declination of the Sun. Such a calendar is called a tropical solar calendar [citation needed].