Search results
Results from the WOW.Com Content Network
A model of the Transonic Truss-Braced Wing aircraft in a wind tunnel at NASA's Ames Research Center. By early 2019, following extensive wind tunnel testing at NASA Ames Research Center, an optimized truss and more sweep for the 170 ft (52 m) span wing allowed flying higher and faster, up from Mach 0.70–0.75 to Mach 0.80 like current jetliners. [3]
"NASA, Boeing Test Low-Drag Truss-Braced Wing Concept: High-aspect-ratio, truss-braced wing promises marked fuel savings". Aviation Week & Space Technology. Aviation Week Network. January 27, 2014; Warwick, Graham (January 28, 2014). "Will Boeing Embrace Braced Wings?". Things with Wings Blog. Aviation Week Network
It’s called the Transonic Truss-Braced Wing concept, which relies on elongated, thin wings stabilized by diagonal struts that connect the wings to the aircraft. The design’s shape creates less ...
Strut braced: one or more stiff struts help to support the wing, as on the Fokker D.VII. A strut may act in compression or tension at different points in the flight regime. Wire braced: alone (as on the Boeing P-26 Peashooter) or, more usually, in addition to struts, tension wires also help to support the wing. Unlike a strut, a wire can act ...
The ecoDemonstrator Program is a Boeing flight test research program, which has used a series of specially modified aircraft to develop and test aviation technologies designed to improve fuel economy and reduce the noise and ecological footprint of airliners.
A different area rule, known as the supersonic area rule, developed by NACA aerodynamicist Robert Jones in "Theory of wing-body drag at supersonic speeds", [2] is applicable at speeds beyond transonic, and in this case, the cross-sectional area requirement is established with relation to the angle of the Mach cone for the design speed.
Transonic (or transsonic) flow is air flowing around an object at a speed that generates regions of both subsonic and supersonic airflow around that object. [1] The exact range of speeds depends on the object's critical Mach number, but transonic flow is seen at flight speeds close to the speed of sound (343 m/s at sea level), typically between Mach 0.8 and 1.2.
With Smith, R., and Summers, J., Transonic Wind Tunnel Tests of an F-8 Airplane Model Equipped with 12 and 14-percent Thick Oblique Wings, NASA TM X-62478, Oct. 1975 With Smith, R., and Summers, J., Transonic Longitudinal and Lateral Control Characteristics of an F-8 Airplane Model Equipped with an Oblique Wing, NASA TM X-73103, March 1976