Search results
Results from the WOW.Com Content Network
The molecular formula C 6 H 8 O 6 (molar mass: 176.124 g/mol) may be: Ascorbic acid (vitamin C) Erythorbic acid; Glucuronolactone; Propane-1,2,3-tricarboxylic acid;
Reactive oxygen species are damaging to animals and plants at the molecular level due to their possible interaction with nucleic acids, proteins, and lipids. Sometimes these radicals initiate chain reactions. Ascorbate can terminate these chain radical reactions by electron transfer. The oxidized forms of ascorbate are relatively unreactive and ...
The molecular formula C 6 H 8 O (molar mass: 96.13 g/mol, exact mass: 96.05751 u) may refer to: Cyclohexenone; 2,5-Dimethylfuran; 2,3-Dimethylfuran; 2,4-Dimethylfuran;
In chemistry, the molar mass (M) (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of the compound. [1] The molar mass is a bulk, not molecular, property of a substance.
The standard composition of gasoline (a mixture of different hydrocarbons) is approximately equivalent to C 6 H 8 Index of chemical compounds with the same molecular formula This set index page lists chemical structure articles associated with the same molecular formula .
The gas constant occurs in the ideal gas law: = = where P is the absolute pressure, V is the volume of gas, n is the amount of substance, m is the mass, and T is the thermodynamic temperature. R specific is the mass-specific gas constant. The gas constant is expressed in the same unit as molar heat.
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...