Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
In engineering and physics, a spring system or spring network is a model of physics described as a graph with a position at each vertex and a spring of given stiffness and length along each edge. This generalizes Hooke's law to higher dimensions.
The Hooke's atom is a simple model of the helium atom using the quantum harmonic oscillator. Modelling phonons, as discussed above. A charge q {\displaystyle q} with mass m {\displaystyle m} in a uniform magnetic field B {\displaystyle \mathbf {B} } is an example of a one-dimensional quantum harmonic oscillator: Landau quantization .
As it is rare for bonds to deviate significantly from their equilibrium values, the most simplistic approaches utilize a Hooke's law formula: = (,), where is the force constant, is the bond length, and , is the value for the bond length between atoms and when all other terms in the force field are set to 0.
Anelasticity is therefore by the existence of a part of time dependent reaction, in addition to the elastic one in the material considered. It is also usually a very small fraction of the total response and so, in this sense, the usual meaning of "anelasticity" as "without elasticity" is improper in a physical sense.
A balance spring obeys Hooke's Law: the restoring torque is proportional to the angular displacement. When this property is exactly satisfied, the balance spring is said to be isochronous, and the period of oscillation is independent of the amplitude of oscillation. This is an essential property for accurate timekeeping, because no mechanical ...
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.