Search results
Results from the WOW.Com Content Network
The Exxon process, also Kuhlmann- or PCUK – oxo process, is used for the hydroformylation of C6–C12 olefins. The process relies on cobalt catalysts. In order to recover the catalyst, an aqueous sodium hydroxide solution or sodium carbonate is added to the organic phase.
In 1953 evidence was disclosed that it is the active catalyst for the conversion of alkenes, CO, and H 2 to aldehydes, a process known as hydroformylation (oxo reaction). [12] Although the use of cobalt-based hydroformylation has since been largely superseded by rhodium-based catalysts, the world output of C 3 –C 18 aldehydes produced by ...
Long chain oxo-alcohols are often prepared using alpha-olefins from the Shell higher olefin process, to give secondary alcohols such as isodecyl alcohol. [2] Key oxo alcohols that are sold in commerce include the following: 2-Methyl-2-butanol (2M2B) n-Butanol; 2-Ethylhexanol; 2-Propylheptanol; Isononyl alcohol; Isodecyl alcohol
a) Doubly bridging and b) terminal oxo ligands. A transition metal oxo complex is a coordination complex containing an oxo ligand. Formally O 2–, an oxo ligand can be bound to one or more metal centers, i.e. it can exist as a terminal or (most commonly) as bridging ligands. Oxo ligands stabilize high oxidation states of a metal. [1]
The heterogeneous process ultimately failed due to catalyst inactivation and was replaced by the water-based homogeneous system for which a pilot plant was operational in 1958. Problems with the aggressive catalyst solution were solved by adopting titanium (newly available for industrial use) as construction material for reactors and pumps ...
The Shell higher olefin process (SHOP) is a chemical process for the production of linear alpha olefins via ethylene oligomerization and olefin metathesis invented and exploited by Shell plc. [1] The olefin products are converted to fatty aldehydes and then to fatty alcohols , which are precursors to plasticizers and detergents .
Typical catalysts are platinum, and redox-active oxides of iron, vanadium, and molybdenum. In many cases, catalysts are modified with a host of additives or promoters that enhance rates or selectivities. Important homogeneous catalysts for the oxidation of organic compounds are carboxylates of cobalt, iron, and manganese
1992 Industrial Chemistry Award, American Chemical Society for outstanding technical accomplishments and leadership in industrial homogeneous catalysis and process development for the hydroformylation of olefins to Oxo products. [5] 1993 Union Carbide Chairman's Award (2) 1993 Carothers Award of the Delaware Section, American Chemical Society [6]