Search results
Results from the WOW.Com Content Network
This is the ejection stage of the cardiac cycle; it is depicted (see circular diagram) as the ventricular systole–first phase followed by the ventricular systole–second phase. [2] After ventricular pressures fall below their peak(s) and below those in the trunks of the aorta and pulmonary arteries, the aortic and pulmonary valves close ...
The action potential passes along the cell membrane causing the cell to contract, therefore the activity of the sinoatrial node results in a resting heart rate of roughly 60–100 beats per minute. All cardiac muscle cells are electrically linked to one another, by intercalated discs which allow the action potential to pass from one cell to the ...
The sinoatrial node (also known as the sinuatrial node, SA node or sinus node) is an oval shaped region of special cardiac muscle in the upper back wall of the right atrium made up of cells known as pacemaker cells. The sinus node is approximately 15 mm long, 3 mm wide, and 1 mm thick, located directly below and to the side of the superior vena ...
[1] [2] In the Wiggers diagram, the X-axis is used to plot time subdivided into the cardiac phases, while the Y-axis typically contains the following on a single grid: Blood pressure. Aortic pressure; Ventricular pressure; Atrial pressure; Ventricular volume; Electrocardiogram; Arterial flow (optional) Heart sounds (optional)
Cardiac physiology or heart function is the study of healthy, unimpaired function of the heart: involving blood flow; myocardium structure; the electrical conduction system of the heart; the cardiac cycle and cardiac output and how these interact and depend on one another.
In the pacemaking cells of the heart (e.g., the sinoatrial node), the pacemaker potential (also called the pacemaker current) is the slow, positive increase in voltage across the cell's membrane, that occurs between the end of one action potential and the beginning of the next.
Image of a myocardial action potential. Effective refractory period in green. In electrocardiography, during a cardiac cycle, once an action potential is initiated, there is a period of time that a new action potential cannot be initiated.
In electrocardiography, the ventricular cardiomyocyte membrane potential is about −90 mV at rest, [1] which is close to the potassium reversal potential. When an action potential is generated, the membrane potential rises above this level in five distinct phases. [1] Phase 4: Resting membrane potential remains stable at ≈−90 mV. [1]