Search results
Results from the WOW.Com Content Network
Rarefaction is the reduction of an item's density, the opposite of compression. [1] Like compression, which can travel in waves ( sound waves , for instance), rarefaction waves also exist in nature. A common rarefaction wave is the area of low relative pressure following a shock wave (see picture).
"Longitudinal waves" and "transverse waves" have been abbreviated by some authors as "L-waves" and "T-waves", respectively, for their own convenience. [1] While these two abbreviations have specific meanings in seismology (L-wave for Love wave [2] or long wave [3]) and electrocardiography (see T wave), some authors chose to use "ℓ-waves" (lowercase 'L') and "t-waves" instead, although they ...
Graph of a simple sine wave Amplitude is the size (magnitude) of the pressure variations in a sound wave, and primarily determines the loudness with which the sound is perceived. In a sinusoidal function such as C sin ( 2 π f t ) {\displaystyle C\sin(2\pi ft)} , C represents the amplitude of the sound wave.
In ecology, rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the number of samples.
It consists of multiple compressions and rarefactions. The rarefaction is the farthest distance apart in the longitudinal wave and the compression is the closest distance together. The speed of the longitudinal wave is increased in higher index of refraction, due to the closer proximity of the atoms in the medium that is being compressed.
They are associated with compression and rarefaction of both the fluid and the magnetic field, as well as with an effective tension that acts to straighten bent magnetic field lines. The properties of magnetosonic waves are highly dependent on the angle between the wavevector and the equilibrium magnetic field and on the relative importance of ...
If the sound is of a frequency that produces standing waves, the wavelength will be visible in the series of flames, with the tallest flames occurring at pressure nodes, and the lowest flames occurring at pressure antinodes. The pressure antinodes correspond to the locations with the highest amount of compression and rarefaction. [1]
Sound is a pressure wave, which consists of alternating periods of compression and rarefaction.A noise-cancellation speaker emits a sound wave with the same amplitude but with an inverted phase (also known as antiphase) relative to the original sound.