Search results
Results from the WOW.Com Content Network
The Peltier effect can be considered as the back-action counterpart to the Seebeck effect (analogous to the back-EMF in magnetic induction): if a simple thermoelectric circuit is closed, then the Seebeck effect will drive a current, which in turn (by the Peltier effect) will always transfer heat from the hot to the cold junction.
For a single thermoelectric leg the device efficiency can be calculated from the temperature dependent properties S, κ and σ and the heat and electric current flow through the material. [8] [9] [10] In an actual thermoelectric device, two materials are used (typically one n-type and one p-type) with metal interconnects. The maximum efficiency ...
Joule heating is caused by interactions between charge carriers (usually electrons) and the body of the conductor.. A potential difference between two points of a conductor creates an electric field that accelerates charge carriers in the direction of the electric field, giving them kinetic energy.
The ampere is an SI base unit and electric current is a base quantity in the International System of Quantities (ISQ). [4]: 15 Electric current is also known as amperage and is measured using a device called an ammeter. [2]: 788 Electric currents create magnetic fields, which are used in motors, generators, inductors, and transformers.
Skin depth, δ, is defined as the depth where the current density is just 1/e (about 37%) of the value at the surface; it depends on the frequency of the current and the electrical and magnetic properties of the conductor. Induction cookers use stranded coils to reduce heating of the coil itself due to skin effect. The AC frequencies used in ...
The electric field lowers the surface barrier by an amount ΔW, and increases the emission current. This is known as the Schottky effect (named for Walter H. Schottky) or field enhanced thermionic emission. It can be modeled by a simple modification of the Richardson equation, by replacing W by (W − ΔW).
Kittel [8] gives some values of L ranging from L = 2.23×10 −8 V 2 K −2 for copper at 0 °C to L = 3.2×10 −8 V 2 K −2 for tungsten at 100 °C. Rosenberg [ 9 ] notes that the Wiedemann–Franz law is generally valid for high temperatures and for low (i.e., a few Kelvins) temperatures, but may not hold at intermediate temperatures.
Between 1840 and 1843, Joule carefully studied the heat produced by an electric current. From this study, he developed Joule's laws of heating, the first of which is commonly referred to as the Joule effect. Joule's first law expresses the relationship between heat generated in a conductor and current flow, resistance, and time. [1]