Search results
Results from the WOW.Com Content Network
Amylose A is a parallel double-helix of linear chains of glucose. Amylose is made up of α(1→4) bound glucose molecules. The carbon atoms on glucose are numbered, starting at the aldehyde (C=O) carbon, so, in amylose, the 1-carbon on one glucose molecule is linked to the 4-carbon on the next glucose molecule (α(1→4) bonds). [3]
Karl Freudenberg et al., in 1939, building upon Hanes' helical model, proposed that the helical conformation of amylose creates a hydrophobic cavity lined with CH groups, which attracts iodine molecules and leads to a shift in iodine's absorption spectrum, explaining the characteristic blue color of the complex. [7]
α-Amylase is an enzyme (EC 3.2.1.1; systematic name 4-α-D-glucan glucanohydrolase) that hydrolyses α bonds of large, α-linked polysaccharides, such as starch and glycogen, yielding shorter chains thereof, dextrins, and maltose, through the following biochemical process: [2]
Another form of amylase, β-amylase (EC 3.2.1.2 ) (alternative names: 1,4-α-D-glucan maltohydrolase; glycogenase; saccharogen amylase) is also synthesized by bacteria, fungi, and plants. Working from the non-reducing end, β-amylase catalyzes the hydrolysis of the second α-1,4 glycosidic bond, cleaving off two glucose units at a time.
Amylase reaction consisting of hydrolyzing amylose, producing maltose. Maltose (/ ˈ m ɔː l t oʊ s / [2] or / ˈ m ɔː l t oʊ z / [3]), also known as maltobiose or malt sugar, is a disaccharide formed from two units of glucose joined with an α(1→4) bond. In the isomer isomaltose, the two glucose molecules
It is made up of a mixture of amylose (15–20%) and amylopectin (80–85%). Amylose consists of a linear chain of several hundred glucose molecules, and Amylopectin is a branched molecule made of several thousand glucose units (every chain of 24–30 glucose units is one unit of Amylopectin). Starches are insoluble in water.
Ribbon diagrams, also known as Richardson diagrams, are 3D schematic representations of protein structure and are one of the most common methods of protein depiction used today. The ribbon depicts the general course and organisation of the protein backbone in 3D and serves as a visual framework for hanging details of the entire atomic structure ...
Amylopectin contains a larger number of Glucose units (2000 to 200,000) as compared to Amylose containing 200 to 1000 α-Glucose units. In contrast, amylose contains very few α(1→6) bonds, or even none at all. This causes amylose to be hydrolyzed more slowly, but also creates higher density and insolubility. [8]