Search results
Results from the WOW.Com Content Network
The lighter isotope of nitrogen, 14 N, is preferred during denitrification, leaving the heavier nitrogen isotope, 15 N, in the residual matter. This selectivity leads to the enrichment of 14 N in the biomass compared to 15 N. [27] Moreover, the relative abundance of 14 N can be analyzed to distinguish denitrification apart from other processes ...
Nitrogen-15 (15 N) tracing is a technique to study the nitrogen cycle using the heavier, stable nitrogen isotope 15 N.Despite the different weights, 15 N is involved in the same chemical reactions as the more abundant 14 N and is therefore used to trace and quantify conversions of one nitrogen compound to another.
The most common denitrification process is outlined below, with the nitrogen oxides being converted back to gaseous nitrogen: 2 NO 3 − + 10 e − + 12 H + → N 2 + 6 H 2 O. The result is one molecule of nitrogen and six molecules of water. Denitrifying bacteria are a part of the N cycle, and consists of sending the N back into the atmosphere.
Nitrifying bacteria are present in distinct taxonomical groups and are found in highest numbers where considerable amounts of ammonia are present (such as areas with extensive protein decomposition, and sewage treatment plants). [3]
Two sources of nitrogen-15 are the positron emission of oxygen-15 [8] and the beta decay of carbon-15. Nitrogen-15 presents one of the lowest thermal neutron capture cross sections of all isotopes. [9] Nitrogen-15 is frequently used in NMR (Nitrogen-15 NMR spectroscopy). Unlike the more abundant nitrogen-14, which has an integer nuclear spin ...
Anammox, an abbreviation for "anaerobic ammonium oxidation", is a globally important microbial process of the nitrogen cycle [1] that takes place in many natural environments. The bacteria mediating this process were identified in 1999, and were a great surprise for the scientific community. [ 2 ]
15 N NMR is the most effective method for investigation of structure of heterocycles with a high content of nitrogen atoms (tetrazoles, triazines and their annelated analogs). [7] [8] 15 N labeling followed by analysis of 13 C– 15 N and 1 H– 15 N couplings may be used for establishing structures and chemical transformations of nitrogen ...
The difference is whether the relative abundance is with respect to all the nitrogen, i.e. 14 N plus 15 N, or just to 14 N. Since the atmosphere is 99.6337% 14 N and 0.3663% 15 N, a is 0.003663 in the former case and 0.003663/0.996337 = 0.003676 in the latter.