Search results
Results from the WOW.Com Content Network
A term's definition may require additional properties that are not listed in this table. In mathematics , a binary relation R {\displaystyle R} on a set X {\displaystyle X} is antisymmetric if there is no pair of distinct elements of X {\displaystyle X} each of which is related by R {\displaystyle R} to the other.
In category theory, a branch of mathematics, the opposite category or dual category C op of a given category C is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal twice yields the original category, so the opposite of an opposite category is the original category itself.
In algebra, a division ring, also called a skew field (or, occasionally, a sfield [1] [2]), is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring [3] in which every nonzero element a has a multiplicative inverse, that is, an element usually denoted a –1, such that a a –1 = a –1 a = 1.
For associative algebras, the definition can be simplified as follows: a non-zero associative algebra over a field is a division algebra if and only if it has a multiplicative identity element 1 and every non-zero element a has a multiplicative inverse (i.e. an element x with ax = xa = 1).
In mathematics, anticommutativity is a specific property of some non-commutative mathematical operations.Swapping the position of two arguments of an antisymmetric operation yields a result which is the inverse of the result with unswapped arguments.
In mathematics, specifically abstract algebra, the opposite of a ring is another ring with the same elements and addition operation, but with the multiplication performed in the reverse order. More explicitly, the opposite of a ring (R, +, ⋅) is the ring (R, +, ∗) whose multiplication ∗ is defined by a ∗ b = b ⋅ a for all a, b in R.
In category theory, a branch of mathematics, duality is a correspondence between the properties of a category C and the dual properties of the opposite category C op.Given a statement regarding the category C, by interchanging the source and target of each morphism as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite ...
In mathematics, a property is any characteristic that applies to a given set. [1] Rigorously, a property p defined for all elements of a set X is usually defined as a function p: X → {true, false}, that is true whenever the property holds; or, equivalently, as the subset of X for which p holds; i.e. the set {x | p(x) = true}; p is its indicator function.