Search results
Results from the WOW.Com Content Network
This is a list of some well-known periodic functions. The constant function f (x) = c, where c is independent of x, is periodic with any period, but lacks a fundamental period. A definition is given for some of the following functions, though each function may have many equivalent definitions.
In signal processing, a periodogram is an estimate of the spectral density of a signal. The term was coined by Arthur Schuster in 1898. [1] Today, the periodogram is a component of more sophisticated methods (see spectral estimation).
A function with period P will repeat on intervals of length P, and these intervals are sometimes also referred to as periods of the function. Geometrically, a periodic function can be defined as a function whose graph exhibits translational symmetry , i.e. a function f is periodic with period P if the graph of f is invariant under translation ...
The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula := = for some given period . [1]
Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.
The period (symbol T) is the interval of time between events, so the period is the reciprocal of the frequency: T = 1/f. [ 2 ] Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals ( sound ), radio waves , and light .
The corresponding time-domain function for the phase of an exponential chirp is the integral of the frequency: = + = + = + ( ()) where is the initial phase (at =). The corresponding time-domain function for a sinusoidal exponential chirp is the sine of the phase in radians: x ( t ) = sin [ ϕ 0 + 2 π f 0 ( T k t T ln ( k ...
Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency. In addition to the geometry-dependent and material-dependent dispersion relations, the overarching Kramers–Kronig relations describe the frequency ...