Search results
Results from the WOW.Com Content Network
For example, the imaginary number is undefined within the set of real numbers. So it is meaningless to reason about the value, solely within the discourse of real numbers. However, defining the imaginary number i {\displaystyle i} to be equal to − 1 {\displaystyle {\sqrt {-1}}} , allows there to be a consistent set of mathematics referred to ...
Spectral graph theory is the branch of graph theory that uses spectra to analyze graphs. See also spectral expansion. split 1. A split graph is a graph whose vertices can be partitioned into a clique and an independent set. A related class of graphs, the double split graphs, are used in the proof of the strong perfect graph theorem.
A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph K 5 and the complete bipartite graph K 3,3.
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.
The slope number of a graph of maximum degree d is clearly at least ⌈ / ⌉, because at most two of the incident edges at a degree-d vertex can share a slope. More precisely, the slope number is at least equal to the linear arboricity of the graph, since the edges of a single slope must form a linear forest, and the linear arboricity in turn is at least ⌈ / ⌉.
In particular, they are the basic tool for Morse theory and catastrophe theory. The link between critical points and topology already appears at a lower level of abstraction. For example, let V {\displaystyle V} be a sub-manifold of R n , {\displaystyle \mathbb {R} ^{n},} and P be a point outside V . {\displaystyle V.}
Graph theory is also widely used in sociology as a way, for example, to measure actors' prestige or to explore rumor spreading, notably through the use of social network analysis software. Under the umbrella of social networks are many different types of graphs. [ 17 ]