Search results
Results from the WOW.Com Content Network
Term Description Examples Autocracy: Autocracy is a system of government in which supreme power (social and political) is concentrated in the hands of one person or polity, whose decisions are subject to neither external legal restraints nor regularized mechanisms of popular control (except perhaps for the implicit threat of a coup d'état or mass insurrection).
Similarly, the additive group of the integers (, +) is not simple; the set of even integers is a non-trivial proper normal subgroup. [1] One may use the same kind of reasoning for any abelian group, to deduce that the only simple abelian groups are the cyclic groups of prime order. The classification of nonabelian simple groups is far less trivial.
For a small non-abelian example, consider the quaternion group Q 8, which is a smallest non-abelian p-group. It has center {1, −1} of order 2, and its upper central series is {1}, {1, −1}, Q 8; so it is nilpotent of class 2. The direct product of two nilpotent groups is nilpotent. [5] All finite p-groups are in fact nilpotent .
Indeed, for p-groups, the rank of the group P is the dimension of the vector space P/Φ(P), where Φ(P) is the Frattini subgroup. The rank of a group is also often defined in such a way as to ensure subgroups have rank less than or equal to the whole group, which is automatically the case for dimensions of vector spaces, but not for groups such ...
Other surprising examples include torsion-free rank 2 groups A n,m and B n,m such that A n is isomorphic to B n if and only if n is divisible by m. For abelian groups of infinite rank, there is an example of a group K and a subgroup G such that K is indecomposable; K is generated by G and a single other element; and
Small groups of prime power order p n are given as follows: Order p: The only group is cyclic. Order p 2: There are just two groups, both abelian. Order p 3: There are three abelian groups, and two non-abelian groups. One of the non-abelian groups is the semidirect product of a normal cyclic subgroup of order p 2 by a cyclic group of order p.
F 4 (q) has a non-trivial graph automorphism when q is a power of 2. These groups are the automorphism groups of 8-dimensional Cayley algebras over finite fields, which gives them 7-dimensional representations. They also act on the corresponding Lie algebras of dimension 14. G 2 (q) has a non-trivial graph automorphism when q is a power of 3
A system of units of measurement, also known as a system of units or system of measurement, is a collection of units of measurement and rules relating them to each other. Systems of measurement have historically been important, regulated and defined for the purposes of science and commerce .