Search results
Results from the WOW.Com Content Network
Cauchy's functional equation is the functional equation: (+) = + (). A function that solves this equation is called an additive function.Over the rational numbers, it can be shown using elementary algebra that there is a single family of solutions, namely : for any rational constant .
In the special case when Ulam's problem accepts a solution for Cauchy's functional equation f(x + y) = f(x) + f(y), the equation E is said to satisfy the Cauchy–Rassias stability. The name is referred to Augustin-Louis Cauchy and Themistocles M. Rassias .
Moreover a smoothness condition is often assumed for the solutions, since without such a condition, most functional equations have very irregular solutions. For example, the gamma function is a function that satisfies the functional equation f ( x + 1 ) = x f ( x ) {\displaystyle f(x+1)=xf(x)} and the initial value f ( 1 ) = 1. {\displaystyle f ...
The stability problem of functional equations originated from a question of Stanisław Ulam, posed in 1940, concerning the stability of group homomorphisms.In the next year, Donald H. Hyers [1] gave a partial affirmative answer to the question of Ulam in the context of Banach spaces in the case of additive mappings, that was the first significant breakthrough and a step toward more solutions ...
That is, the Cauchy–Riemann equations are the conditions for a function to be conformal. Moreover, because the composition of a conformal transformation with another conformal transformation is also conformal, the composition of a solution of the Cauchy–Riemann equations with a conformal map must itself solve the Cauchy–Riemann equations.
Download QR code; Print/export Download as PDF; Printable version; In other projects ... Cauchy's functional equation; F. Functional equation (L-function) ...
As written in the Cauchy momentum equation, the stress terms p and τ are yet unknown, so this equation alone cannot be used to solve problems. Besides the equations of motion—Newton's second law—a force model is needed relating the stresses to the flow motion. [ 12 ]
In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis.It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function.