Search results
Results from the WOW.Com Content Network
In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...
The logarithmic moment generating function (which is the cumulant-generating function) of a random variable is defined as: = [ ()].Let ,, … be a sequence of iid real random variables with finite logarithmic moment generating function, i.e. () < for all .
Cramér’s decomposition theorem, a statement about the sum of normal distributed random variable Cramér's theorem (large deviations) , a fundamental result in the theory of large deviations Cramer's theorem (algebraic curves) , a result regarding the necessary number of points to determine a curve
The number of distinct terms (including those with a zero coefficient) in an n-th degree equation in two variables is (n + 1)(n + 2) / 2.This is because the n-th degree terms are ,, …,, numbering n + 1 in total; the (n − 1) degree terms are ,, …,, numbering n in total; and so on through the first degree terms and , numbering 2 in total, and the single zero degree term (the constant).
Cramer's rule is a closed-form expression, in terms of determinants, of the solution of a system of n linear equations in n unknowns. Cramer's rule is useful for reasoning about the solution, but, except for n = 2 or 3 , it is rarely used for computing a solution, since Gaussian elimination is a faster algorithm.
It may be viewed as the association between two variables as a percentage of their maximum possible variation. φ c 2 is the mean square canonical correlation between the variables. [citation needed] In the case of a 2 × 2 contingency table Cramér's V is equal to the absolute value of Phi coefficient.
We're happy you consult Wikipedia often. If just 2% of our most loyal readers gave $2.75 today, we'd hit our goal in a few hours. Most readers don't donate, so if Wikipedia has given you $2.75 worth of knowledge, please give. Any contribution helps, whether it's $2.75 one time or monthly.
A natural question to ask, given the somewhat abstract setting of the general framework above, is whether the rate function is unique. This turns out to be the case: given a sequence of probability measures (μ δ) δ>0 on X satisfying the large deviation principle for two rate functions I and J, it follows that I(x) = J(x) for all x ∈ X.