enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    Heron's formula is a special case of Brahmagupta's formula for the area of a cyclic quadrilateral. Heron's formula and Brahmagupta's formula are both special cases of Bretschneider's formula for the area of a quadrilateral. Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one of the sides of the ...

  3. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    In 499 Aryabhata, a great mathematician-astronomer from the classical age of Indian mathematics and Indian astronomy, expressed the area of a triangle as one-half the base times the height in the Aryabhatiya. [7] A formula equivalent to Heron's was discovered by the Chinese independently of the Greeks.

  4. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.

  5. Qin Jiushao - Wikipedia

    en.wikipedia.org/wiki/Qin_Jiushao

    This formula is the same as Heron's formula, proved by Heron of Alexandria about 60 BCE, though knowledge of the formula may go back to Archimedes. As precipitation was important agriculture and food production, Qin developed precipitation gauges that was widely used in 1247 during the Mongol Empire / Southern Song dynasty to gather ...

  6. Heronian triangle - Wikipedia

    en.wikipedia.org/wiki/Heronian_triangle

    In geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. [ 1 ] [ 2 ] Heronian triangles are named after Heron of Alexandria , based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84 .

  7. History of mathematics - Wikipedia

    en.wikipedia.org/wiki/History_of_mathematics

    Heron of Alexandria (c. 10 –70 AD) is credited with Heron's formula for finding the area of a scalene triangle and with being the first to recognize the possibility of negative numbers possessing square roots. [77] Menelaus of Alexandria (c. 100 AD) pioneered spherical trigonometry through Menelaus' theorem. [78]

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Heronian mean - Wikipedia

    en.wikipedia.org/wiki/Heronian_mean

    A version of this formula, for square frusta, appears in the Moscow Mathematical Papyrus from Ancient Egyptian mathematics, whose content dates to roughly 1850 BC. [ 1 ] [ 3 ] References