Search results
Results from the WOW.Com Content Network
Data reconciliation is a technique that targets at correcting measurement errors that are due to measurement noise, i.e. random errors.From a statistical point of view the main assumption is that no systematic errors exist in the set of measurements, since they may bias the reconciliation results and reduce the robustness of the reconciliation.
Data type validation is customarily carried out on one or more simple data fields. The simplest kind of data type validation verifies that the individual characters provided through user input are consistent with the expected characters of one or more known primitive data types as defined in a programming language or data storage and retrieval ...
For data requests that fall between the table's samples, an interpolation algorithm can generate reasonable approximations by averaging nearby samples." [8] In data analysis applications, such as image processing, a lookup table (LUT) can be used to transform the input data into a more desirable output format. For example, a grayscale picture ...
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Verification is intended to check that a product, service, or system meets a set of design specifications. [6] [7] In the development phase, verification procedures involve performing special tests to model or simulate a portion, or the entirety, of a product, service, or system, then performing a review or analysis of the modeling results.
Validation based on existing data involves analyzing the goodness of fit of the model or analyzing whether the residuals seem to be random (i.e. residual diagnostics). This method involves using analyses of the models closeness to the data and trying to understand how well the model predicts its own data.
A proper validation process consists of at least two processes. Validation of a backup file is of little or no use unless it compares the backup file's data to the data of the source. Additionally, "validation" is an unknown unless it's known with certainty that the backup file can actually restore the source's data.
The output of a cryptographic hash function, also known as a message digest, can provide strong assurances about data integrity, whether changes of the data are accidental (e.g., due to transmission errors) or maliciously introduced. Any modification to the data will likely be detected through a mismatching hash value.