Search results
Results from the WOW.Com Content Network
Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...
In section 6.2 of the old IEEE 754-2008 standard, there are two anomalous functions (the maxNum and minNum functions, which return the maximum and the minimum, respectively, of two operands that are expected to be numbers) that favor numbers — if just one of the operands is a NaN then the value of the other operand is returned.
This standard defines the format for 32-bit numbers called single precision, as well as 64-bit numbers called double precision and longer numbers called extended precision (used for intermediate results). Floating-point representations can support a much wider range of values than fixed-point, with the ability to represent very small numbers ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For numbers with a base-2 exponent part of 0, i.e. numbers with an absolute value higher than or equal to 1 but lower than 2, an ULP is exactly 2 −23 or about 10 −7 in single precision, and exactly 2 −53 or about 10 −16 in double precision. The mandated behavior of IEEE-compliant hardware is that the result be within one-half of a ULP.
Furthermore, it is clear that even-digits with greater than or equal to 8, [10] and with 9 digits, [11] or odd-digits with greater than or equal to 15 digits [12] have multiple solutions. Although 11-digit and 13-digit numbers have only one solution, it forms a loop of five numbers and a loop of two numbers, respectively. [ 13 ]
The geometric mean of two positive numbers is never greater than the arithmetic mean. [3] So the geometric means are an increasing sequence g 0 ≤ g 1 ≤ g 2 ≤ ...; the arithmetic means are a decreasing sequence a 0 ≥ a 1 ≥ a 2 ≥ ...; and g n ≤ M(x, y) ≤ a n for any n. These are strict inequalities if x ≠ y.
In mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list; and further, that the two means are equal if and only if every number in the list is the same (in which ...