Search results
Results from the WOW.Com Content Network
Escape speed at a distance d from the center of a spherically symmetric primary body (such as a star or a planet) with mass M is given by the formula [2] [3] = = where: G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg −1 ⋅s −2 [4])
After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances. If an object fell 10 000 m to Earth, then the results of both equations differ by only 0.08 %; however, if it fell from geosynchronous orbit, which is 42 164 km, then the ...
For example, if a station reports that the 500 mb [i.e. millibar] height at its location is 5600 m, it means that the level of the atmosphere over that station at which the atmospheric pressure is 500 mb is 5600 meters above sea level. This is an estimated height based on temperature and pressure data."
Kincheloe flew 2000 miles per hour (3,200 km/h) at 126,000 feet (38,500 m), or 24 miles up. At this altitude and speed, aerodynamic lift still carries 98 percent of the weight of the plane, and only two percent is carried by inertia, or Kepler force, as space scientists call it. But at 300,000 feet (91,440 m) or 57 miles up, this relationship ...
It is the rate of increase of wind strength with unit increase in height above ground level. [5] [6] In metric units, it is often measured in units of meters per second of speed, per kilometer of height (m/s/km), which reduces inverse milliseconds (ms −1), a unit also used for shear rate.
The barometric formula is a formula used to model how the air pressure ... = height of reference level b (feet; ... 9.80665 m/s 2 = molar mass of ...
A wide variety of sources [5] [6] [7] define LEO in terms of altitude.The altitude of an object in an elliptic orbit can vary significantly along the orbit. Even for circular orbits, the altitude above ground can vary by as much as 30 km (19 mi) (especially for polar orbits) due to the oblateness of Earth's spheroid figure and local topography.
The original Naismith's rule from 1892 says that one should allow one hour per three miles on the map and an additional hour per 2000 feet of ascent. [1] [4] It is included in the last sentence of his report from a trip. [1] [8] Today it is formulated in many ways. Naismith's 1 h / 3 mi + 1 h / 2000 ft can be replaced by: