Search results
Results from the WOW.Com Content Network
A randomness test (or test for randomness), in data evaluation, is a test used to analyze the distribution of a set of data to see whether it can be described as random (patternless). In stochastic modeling , as in some computer simulations , the hoped-for randomness of potential input data can be verified, by a formal test for randomness, to ...
These approaches combine a pseudo-random number generator (often in the form of a block or stream cipher) with an external source of randomness (e.g., mouse movements, delay between keyboard presses etc.). /dev/random – Unix-like systems; CryptGenRandom – Microsoft Windows; Fortuna
The most common of these is known as Martin-Löf randomness (K-randomness or 1-randomness), but stronger and weaker forms of randomness also exist. When the term "algorithmically random" is used to refer to a particular single (finite or infinite) sequence without clarification, it is usually taken to mean "incompressible" or, in the case the ...
Randomness coming from the initial conditions. This aspect is studied by chaos theory, and is observed in systems whose behavior is very sensitive to small variations in initial conditions (such as pachinko machines and dice). Randomness intrinsically generated by the system.
A random sample can be thought of as a set of objects that are chosen randomly. More formally, it is "a sequence of independent, identically distributed (IID) random data points." In other words, the terms random sample and IID are synonymous. In statistics, "random sample" is the typical terminology, but in probability, it is more common to ...
The word stochastic in English was originally used as an adjective with the definition "pertaining to conjecturing", and stemming from a Greek word meaning "to aim at a mark, guess", and the Oxford English Dictionary gives the year 1662 as its earliest occurrence. [1]
A random 32×32 binary matrix is formed, each row a 32-bit random integer. The rank is determined. That rank can be from 0 to 32, ranks less than 29 are rare, and their counts are pooled with those for rank 29. Ranks are found for 40000 such random matrices and a chi square test is performed on counts for ranks 32, 31, 30 and ≤ 29.
Intuitively, an extractor takes a weakly random n-bit input and a short, uniformly random seed and produces an m-bit output that looks uniformly random. The aim is to have a low d {\displaystyle d} (i.e. to use as little uniform randomness as possible) and as high an m {\displaystyle m} as possible (i.e. to get out as many close-to-random bits ...