Search results
Results from the WOW.Com Content Network
A pairing is called perfect if the above map is an isomorphism of R-modules and the other evaluation map ′: (,) is an isomorphism also. In nice cases, it suffices that just one of these be an isomorphism, e.g. when R is a field, M,N are finite dimensional vector spaces and L=R .
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x 2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers).
The statement that this is the only quadratic pairing function is known as the Fueter–Pólya theorem. [9] Whether this is the only polynomial pairing function is still an open question. When we apply the pairing function to k 1 and k 2 we often denote the resulting number as k 1, k 2 . [citation needed]
Given such a pairing, some natural numbers are paired with subsets that contain the very same number. For instance, in our example the number 2 is paired with the subset {1, 2, 3}, which contains 2 as a member. Let us call such numbers selfish. Other natural numbers are paired with subsets that do not contain them. For instance, in our example ...
In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. [1] In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching.
In mathematics, the Weil pairing is a pairing (bilinear form, though with multiplicative notation) on the points of order dividing n of an elliptic curve E, taking values in nth roots of unity. More generally there is a similar Weil pairing between points of order n of an abelian variety and its dual.
In this case, the dual graph is cubic and bridgeless, so by Petersen's theorem it has a matching, which corresponds in the original graph to a pairing of adjacent triangle faces. Each pair of triangles gives a path of length three that includes the edge connecting the triangles together with two of the four remaining triangle edges. [3]
A mathematical exercise is a routine application of algebra or other mathematics to a stated challenge. Mathematics teachers assign mathematical exercises to develop the skills of their students. Early exercises deal with addition , subtraction , multiplication , and division of integers .