enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Centers of gravity in non-uniform fields - Wikipedia

    en.wikipedia.org/wiki/Centers_of_gravity_in_non...

    In particular, a non-uniform gravitational field can produce a torque on an object, even about an axis through the center of mass. The center of gravity seeks to explain this effect. Formally, a center of gravity is an application point of the resultant gravitational force on the body. Such a point may not exist, and if it exists, it is not unique.

  3. Geodesics in general relativity - Wikipedia

    en.wikipedia.org/wiki/Geodesics_in_general...

    A complete field theory knows only fields and not the concepts of particle and motion. For these must not exist independently from the field but are to be treated as part of it. On the basis of the description of a particle without singularity, one has the possibility of a logically more satisfactory treatment of the combined problem: The ...

  4. Tidal force - Wikipedia

    en.wikipedia.org/wiki/Tidal_force

    Figure 1: Tidal interaction between the spiral galaxy NGC 169 and a smaller companion [1]. The tidal force or tide-generating force is the difference in gravitational attraction between different points in a gravitational field, causing bodies to be pulled unevenly and as a result are being stretched towards the attraction.

  5. Gravity anomaly - Wikipedia

    en.wikipedia.org/wiki/Gravity_anomaly

    The gravity anomaly at a location on the Earth's surface is the difference between the observed value of gravity and the value predicted by a theoretical model. If the Earth were an ideal oblate spheroid of uniform density, then the gravity measured at every point on its surface would be given precisely by a simple algebraic expression.

  6. Vacuum solution (general relativity) - Wikipedia

    en.wikipedia.org/wiki/Vacuum_solution_(general...

    But the gravitational field can do work, so we must expect the gravitational field itself to possess energy, and it does. However, determining the precise location of this gravitational field energy is technically problematical in general relativity, by its very nature of the clean separation into a universal gravitational interaction and "all ...

  7. Sun - Wikipedia

    en.wikipedia.org/wiki/Sun

    The Sun is moved by the gravitational pull of the planets. The center of the Sun moves around the Solar System barycenter, within a range from 0.1 to 2.2 solar radii. The Sun's motion around the barycenter approximately repeats every 179 years, rotated by about 30° due primarily to the synodic period of Jupiter and Saturn. [152]

  8. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    According to this principle, a uniform gravitational field acts equally on everything within it and, therefore, cannot be detected by a free-falling observer. Conversely, all local gravitational effects should be reproducible in a linearly accelerating reference frame, and vice versa.

  9. Nodal precession - Wikipedia

    en.wikipedia.org/wiki/Nodal_precession

    This precession is due to the non-spherical nature of a rotating body, which creates a non-uniform gravitational field. The following discussion relates to low Earth orbit of artificial satellites, which have no measurable effect on the motion of Earth. The nodal precession of more massive, natural satellites like the Moon is more complex.