Search results
Results from the WOW.Com Content Network
These relationships between seminorms, Minkowski functionals, and absorbing disks is a major reason why Minkowski functionals are studied and used in functional analysis. In particular, through these relationships, Minkowski functionals allow one to "translate" certain geometric properties of a subset of X {\textstyle X} into certain algebraic ...
In mathematics, particularly in functional analysis, a seminorm is like a norm but need not be positive definite.Seminorms are intimately connected with convex sets: every seminorm is the Minkowski functional of some absorbing disk and, conversely, the Minkowski functional of any such set is a seminorm.
Hermann Minkowski (1864–1909) found that the theory of special relativity could be best understood as a four-dimensional space, since known as the Minkowski spacetime.. In physics, Minkowski space (or Minkowski spacetime) (/ m ɪ ŋ ˈ k ɔː f s k i,-ˈ k ɒ f-/ [1]) is the main mathematical description of spacetime in the absence of gravitation.
In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of n-dimensional hyperbolic geometry in which points are represented by points on the forward sheet S + of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and m ...
Every norm, seminorm, and real linear functional is a sublinear function.The identity function on := is an example of a sublinear function (in fact, it is even a linear functional) that is neither positive nor a seminorm; the same is true of this map's negation . [5] More generally, for any real , the map ,: {is a sublinear function on := and moreover, every sublinear function : is of this ...
Every topological vector space has a continuous dual space—the set ′ of all continuous linear functionals, that is, continuous linear maps from the space into the base field . A topology on the dual can be defined to be the coarsest topology such that the dual pairing each point evaluation X ′ → K {\displaystyle X'\to \mathbb {K} } is ...
The Minkowski distance can also be viewed as a multiple of the power mean of the component-wise differences between and . The following figure shows unit circles (the level set of the distance function where all points are at the unit distance from the center) with various values of p {\displaystyle p} :
In mathematical analysis, the Minkowski inequality establishes that the L p spaces are normed vector spaces. Let be a measure space, let < and let ...