Search results
Results from the WOW.Com Content Network
In this case, the Berry phase corresponding to any given path on the unit sphere in magnetic-field space is just half the solid angle subtended by the path. The integral of the Berry curvature over the whole sphere is therefore exactly 2 π {\displaystyle 2\pi } , so that the Chern number is unity, consistent with the Chern theorem.
There are several important aspects of this generalization of Berry's phase: 1) Instead of the parameter space for the original Berry phase, this Ning-Haken generalization is defined in phase space; 2) Instead of the adiabatic evolution in quantum mechanical system, the evolution of the system in phase space needs not to be adiabatic.
Trigonal bipyramidal molecular shape ax = axial ligands (on unique axis) eq = equatorial ligand (in plane perpendicular to unique axis). The Berry mechanism, or Berry pseudorotation mechanism, is a type of vibration causing molecules of certain geometries to isomerize by exchanging the two axial ligands (see the figure) for two of the equatorial ones.
The one-dimensional integrals can be generalized to multiple dimensions. [2] (+) = ()Here A is a real positive definite symmetric matrix.. This integral is performed by diagonalization of A with an orthogonal transformation = = where D is a diagonal matrix and O is an orthogonal matrix.
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Sir Michael Victor Berry (born 14 March 1941) is a British theoretical physicist. He is the Melville Wills Professor of Physics (Emeritus) at the University of Bristol . He is known for the Berry phase , a phenomenon observed in both quantum mechanics and classical optics , as well as Berry connection and curvature .
The method consists of first rewriting the equations as a system of differential equations that are first-order in time, by introducing additional variables. The original and the new variables form a vector in the phase space. The solution then becomes a curve in the phase space, parametrized by time.