Search results
Results from the WOW.Com Content Network
where is the hydrostatic pressure in addition to the atmospheric one, is the volume at atmospheric pressure, is the volume under additional pressure , and , are experimentally determined parameters. A very detailed historical study on the Tait equation with the physical interpretation of the two parameters A {\displaystyle A} and Π ...
A centimetre of water [1] is a unit of pressure. It may be defined as the pressure exerted by a column of water of 1 cm in height at 4 °C (temperature of maximum density) at the standard acceleration of gravity, so that 1 cmH 2 O (4°C) = 999.9720 kg/m 3 × 9.80665 m/s 2 × 1 cm = 98.063754138 Pa ≈ 98.0638 Pa, but conventionally a nominal maximum water density of 1000 kg/m 3 is used, giving ...
Having the same units on both sides of an equation does not ensure that the equation is correct, but having different units on the two sides (when expressed in terms of base units) of an equation implies that the equation is wrong. For example, check the universal gas law equation of PV = nRT, when: the pressure P is in pascals (Pa)
Pressure as a function of the height above the sea level. There are two equations for computing pressure as a function of height. The first equation is applicable to the atmospheric layers in which the temperature is assumed to vary with altitude at a non null lapse rate of : = [,, ()] ′, The second equation is applicable to the atmospheric layers in which the temperature is assumed not to ...
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant. Therefore, when the volume is halved, the pressure is doubled; and if the volume is doubled, the pressure is halved.
For example, such a regulation might limit the concentration of NOx to 55 ppmv in a dry combustion exhaust gas corrected to 3 volume percent O 2. As another example, a regulation might limit the concentration of particulate matter to 0.1 grain per standard cubic foot (i.e., scf) of dry exhaust gas corrected to 12 volume percent CO 2.
Example: How many standard cubic feet are in 1 cubic foot of gas at 80 °F and gauge pressure 50 psi? (assuming that there is 13.6 psi atmospheric pressure and ignoring super compressibility) V s = 1 cu ft × [(13.6 psi + 50 psi) / 14.73 psi] × [(60 °F + 459.67 °F) / (80 °F + 459.67 °F)] V s = 4.16 scf