Search results
Results from the WOW.Com Content Network
In solid-state physics, metal-induced gap states are electron states that exist near the surface of a semiconductor due to the presence of a metal on the surface. They have energies that fall within the semiconductor's bandgap thus are forbidden in the bulk of the semiconductor.
The oligodynamic effect (from Greek oligos, "few", and dynamis, "force") is a biocidal effect of metals, especially heavy metals, that occurs even in low concentrations. This effect is attributed to the antibacterial behavior of metal ions, which are absorbed by bacteria upon contact and damage their cell membranes. [1]
The nature of these metal-induced gap states and their occupation by electrons tends to pin the center of the band gap to the Fermi level, an effect known as Fermi level pinning. Thus the heights of the Schottky barriers in metal–semiconductor contacts often show little dependence on the value of the semiconductor or metal work functions, in ...
Bioinorganic chemistry is a field that examines the role of metals in biology. Bioinorganic chemistry includes the study of both natural phenomena such as the behavior of metalloproteins as well as artificially introduced metals, including those that are non-essential , in medicine and toxicology .
Shown is the graphical definition of the Schottky barrier height, Φ B, for an n-type semiconductor as the difference between the interfacial conduction band edge E C and Fermi level E F. Whether a given metal-semiconductor junction is an ohmic contact or a Schottky barrier depends on the Schottky barrier height, Φ B, of the junction.
This model includes a dipole layer at the interface between the two semiconductors which arises from electron tunneling from the conduction band of one material into the gap of the other (analogous to metal-induced gap states). This model agrees well with systems where both materials are closely lattice matched [11] such as GaAs/AlGaAs.
The term was coined in analogy with proteome as [1] metallomics is the study of metallome: the "comprehensive analysis of the entirety of metal and metalloid species within a cell or tissue type". [2] Therefore, metallomics can be considered a branch of metabolomics, [citation needed] even though the metals are not typically considered as ...
Reductive elimination is an elementary step in organometallic chemistry in which the oxidation state of the metal center decreases while forming a new covalent bond between two ligands. It is the microscopic reverse of oxidative addition , and is often the product-forming step in many catalytic processes.