Search results
Results from the WOW.Com Content Network
Because in a continuous function, the function for a sphere is the function for a circle with the radius dependent on z (or whatever the third variable is), it stands to reason that the algorithm for a discrete sphere would also rely on the midpoint circle algorithm. But when looking at a sphere, the integer radius of some adjacent circles is ...
The algorithm selects one point p randomly and uniformly from P, and recursively finds the minimal circle containing P – {p}, i.e. all of the other points in P except p. If the returned circle also encloses p, it is the minimal circle for the whole of P and is returned. Otherwise, point p must lie on the boundary of the result circle.
The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.
A circle packing for a five-vertex planar graph. The circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles (in general, on any Riemann surface) whose interiors are ...
An extension to the original algorithm called the midpoint circle algorithm may be used for drawing circles. While algorithms such as Wu's algorithm are also frequently used in modern computer graphics because they can support antialiasing , Bresenham's line algorithm is still important because of its speed and simplicity.
The algorithm consists of drawing pairs of pixels straddling the line, each coloured according to its distance from the line. Pixels at the line ends are handled separately. Lines less than one pixel long are handled as a special case. An extension to the algorithm for circle drawing was presented by Xiaolin Wu in the book Graphics Gems II ...
The red curve is an epicycloid traced as the small circle (radius r = 1) rolls around the outside of the large circle (radius R = 3).. In geometry, an epicycloid (also called hypercycloid) [1] is a plane curve produced by tracing the path of a chosen point on the circumference of a circle—called an epicycle—which rolls without slipping around a fixed circle.
Fitting of a noisy curve by an asymmetrical peak model, with an iterative process (Gauss–Newton algorithm with variable damping factor α).Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints.