Search results
Results from the WOW.Com Content Network
A reflection through an axis. In mathematics, a reflection (also spelled reflexion) [1] is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as the set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection.
Likewise, (x, −y) are the coordinates of its reflection across the first coordinate axis (the x-axis). In more generality, reflection across a line through the origin making an angle with the x-axis, is equivalent to replacing every point with coordinates (x, y) by the point with coordinates (x′,y′), where
A skew reflection is a generalization of an ordinary reflection across a line , where all point-image pairs are on a line perpendicular to . Because a skew reflection leaves the hyperbola fixed, the pair of asymptotes is fixed, too.
The dihedral group D 2 is generated by the rotation r of 180 degrees, and the reflection s across the x-axis. The elements of D 2 can then be represented as {e, r, s, rs}, where e is the identity or null transformation and rs is the reflection across the y-axis. The four elements of D 2 (x-axis is vertical here) D 2 is isomorphic to the Klein ...
A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.
In mathematics, reflection through the origin refers to the point reflection of Euclidean space R n across the origin of the Cartesian coordinate system. Reflection through the origin is an orthogonal transformation corresponding to scalar multiplication by − 1 {\displaystyle -1} , and can also be written as − I {\displaystyle -I} , where I ...
This isometry maps the x-axis to itself; any other line which is parallel to the x-axis gets reflected in the x-axis, so this system of parallel lines is left invariant. The isometry group generated by just a glide reflection is an infinite cyclic group. [1]
The graph of an involution (on the real numbers) is symmetric across the line y = x. This is due to the fact that the inverse of any general function will be its reflection over the line y = x. This can be seen by "swapping" x with y. If, in particular, the function is an involution, then its graph is its own reflection.