Search results
Results from the WOW.Com Content Network
The simplified chemical reaction is: NaCl + H 2 O + energy → NaOCl + H 2 [citation needed] That is, energy is added to sodium chloride (table salt) in water, producing sodium hypochlorite and hydrogen gas. Because the reaction takes place in an unpartitioned cell and NaOH is present in the same solution as the Cl 2: 2 NaCl + 2 H 2 O → 2 ...
Chlorine's ability to completely dissociate in water is also why it is an essential electrolyte in many biological processes. [6] Chlorine, along with phosphorus, is the sixth most common element in organic matter. [1] Cells utilize chloride to balance pH and maintain turgor pressure at equilibrium.
In the chloralkali process (electrolysis of brine) a water/sodium chloride mixture is only half the electrolysis of water since the chloride ions are oxidized to chlorine rather than water being oxidized to oxygen. Thermodynamically, this would not be expected since the oxidation potential of the chloride ion is less than that of water, but the ...
Energy consumption per unit weight of product is not far below that for iron and steel manufacture [13] and greater than for the production of glass [14] or cement. [15] Since electricity is an indispensable raw material for the production of chlorine, the energy consumption corresponding to the electrochemical reaction cannot be reduced ...
The compound hydrogen chloride has the chemical formula HCl and as such is a hydrogen halide. At room temperature, it is a colorless gas, which forms white fumes of hydrochloric acid upon contact with atmospheric water vapor. Hydrogen chloride gas and hydrochloric acid are important in technology and industry.
The reason for adding gelatin is that it removes metal ions such as Cu 2+ that catalyses the destruction of hydrazine by reaction with monochloramine (NH 2 Cl) to produce ammonium chloride and nitrogen. [7] Hydrogen azide (HN 3) was first produced in 1890 by the oxidation of aqueous hydrazine by nitrous acid. It is very explosive and even ...
Related processes are known that use molten NaCl to give chlorine and sodium metal or condensed hydrogen chloride to give hydrogen and chlorine. The process has a high energy consumption, for example around 2,500 kWh (9,000 MJ) of electricity per tonne of sodium hydroxide produced. Because the process yields equivalent amounts of chlorine and ...
Ignition occurs when chlorine is passed into ammonia, forming nitrogen and hydrogen chloride; if chlorine is present in excess, then the highly explosive nitrogen trichloride (NCl 3) is also formed. The combustion of ammonia to form nitrogen and water is exothermic: