Search results
Results from the WOW.Com Content Network
In the Lambda lifting section, a meta function for first lifting and then converting the resulting lambda expression into recursive equation was described. The Lambda Drop meta function performs the reverse by first converting recursive equations to lambda abstractions, and then dropping the resulting lambda expression, into the smallest scope ...
Anonymous recursion is primarily of use in allowing recursion for anonymous functions, particularly when they form closures or are used as callbacks, to avoid having to bind the name of the function. Anonymous recursion primarily consists of calling "the current function", which results in direct recursion.
In functional programming, fold (also termed reduce, accumulate, aggregate, compress, or inject) refers to a family of higher-order functions that analyze a recursive data structure and through use of a given combining operation, recombine the results of recursively processing its constituent parts, building up a return value.
Lambda calculus is Turing complete, that is, it is a universal model of computation that can be used to simulate any Turing machine. [3] Its namesake, the Greek letter lambda (λ), is used in lambda expressions and lambda terms to denote binding a variable in a function.
A function's identity is based on its implementation. A lambda calculus function (or term) is an implementation of a mathematical function. In the lambda calculus there are a number of combinators (implementations) that satisfy the mathematical definition of a fixed-point combinator.
The names "lambda abstraction", "lambda function", and "lambda expression" refer to the notation of function abstraction in lambda calculus, where the usual function f (x) = M would be written (λx. M), and where M is an expression that uses x. Compare to the Python syntax of lambda x: M.
The term closure is often used as a synonym for anonymous function, though strictly, an anonymous function is a function literal without a name, while a closure is an instance of a function, a value, whose non-local variables have been bound either to values or to storage locations (depending on the language; see the lexical environment section below).
Chains of three or more functions are possible; for example, function 1 calls function 2, function 2 calls function 3, and function 3 calls function 1 again. Indirect recursion is also called mutual recursion , which is a more symmetric term, though this is simply a difference of emphasis, not a different notion.